Author Affiliations
Abstract
1 State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
To solve the rate-dependent hysteresis compensation problem in fast steering mirror (FSM) systems, an improved Prandtl-Ishlinskii (P-I) model is proposed in this paper. The proposed model is formulated by employing a linear density function into the STOP operator. By this way, the proposed model has a relatively simple mathematic format, which can be applied to compensate the rate-dependent hysteresis directly. Adaptive differential evolution algorithm is utilized to obtain the accurate parameters of the proposed model. A fast steering mirror control system is established to demonstrate the validity and feasibility of the improved P-I model. Comparative experiments with different input signals are performed and analyzed, and the results show that the proposed model not only suppresses the rate-dependent hysteresis effectively, but also obtains high tracking precision.
光电子快报(英文版)
2016, 12(6): 426

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!